The secret to Germany’s scientific excellence
Nature 549,18–۲۲()/ doi:10.1038/549018a
With a national election this month, Germany proves that foresight and stability can power research.
Ask any German researcher why the country’s science base is blooming, and they are bound to mention Chancellor Angela Merkel. The world’s most powerful woman, they say, has not forgotten her roots as an East German physicist.
During a decade of global financial turbulence, her government has increased annual science budgets in a stable, predictable, quintessentially German way. It has spurred competition among universities and improved collaboration with the country’s unique publicly funded research institutions. Under Merkel’s watch, Germany has maintained its position as a world leader in areas such as renewable energy and climate; and with the guarantee of strong support for basic research, its impact in other sectors has grown.
Foreign researchers are increasingly choosing to make their careers in Germany rather than opting for traditional brain magnets such as the United States or the United Kingdom. With its safe-but-dull reputation, Germany is starting to look like the tortoise to their hare. And as the country prepares for a national election on 24 September, most onlookers expect the trends to continue.
The reasons behind Germany’s success go beyond science budgets or some sort of ‘Merkel effect’, says Wolfgang Schön, a director of the Max Planck Institute for Tax Law and Public Finance in Munich and vice-president of the DFG, Germany’s main university-research funding agency. Like Merkel, the country has deep science roots, he says.
Germany was a world leader in science and technology before the turbulence of the twentieth century; it established traditions that many countries still follow. Although it struggles with the remnants of male-dominated hierarchies and pervasive, inflexible regulations, German research is looking as strong as ever, particularly on a global stage that seems increasingly indifferent to science. “I’d love it if our science-policy and budget decision-makers in the US were willing to take lessons from Germany again today,” says Kenneth Prewitt, a political scientist at Columbia University in New York City.
Source: Spending, OECD; Publishing, Scival/Scopus; Patents, USPTO/EPO
The structure of modern German science rests on concepts developed two centuries ago by Wilhelm von Humboldt, a Prussian educator who pioneered ideas that continue to hold sway around the world. It was he, for example, who suggested that university professors should do front-line research as well as teaching.
His philosophy that education should be both broad and deep, and that academic life should be free from politics and religion, remains engraved in the German psyche. “The Humboldtian system is in our DNA,” says Thorsten Wilhelmy, general secretary of the Berlin Institute for Advanced Study. “That’s why politicians are not so tempted to cut basic research when times get tough.” (See ‘Build, link and trust’.)
The German higher-education and research system seems to be in good shape. The country is near the top of global league tables in terms of output, publication quality, and numbers of students and faculty members from abroad (see ‘Germany by the numbers’). So why worry about the future? My reasons for concern relate to the political conditions under which universities and research organizations will have to operate in the 2020s. And, from my experience as director of Germany’s largest private funder of basic research, I feel that it is essential to establish more sustainable, long-term alliances with leading research institutions in other countries — in particular with universities from the Southern Hemisphere.
In 2020, a policy called Schuldenbremse or ‘debt brake’ is set to roll out in most German states. Agreed by the federal government and the 16 state governments in 2009, this will put a strict upper limit on budget deficits and prevent them from making new debts, especially at the state level. If implemented as planned, universities will struggle to maintain or refurbish their infrastructure, let alone acquire new buildings or facilities. Current estimates are that some €۳۵ billion (US$41.2 billion) is needed until 2025 just to keep existing lecture halls and laboratories fit for purpose. Meeting these challenges will require the next federal government to make a strong financial commitment to the university sector.
Policymakers at every level must widen their objectives considerably in terms of what a resilient higher-education and research system should achieve. This was discussed earlier this year by the Hightech Forum, a government advisory body on which I sit. Two actions are urgent: to speed up the process of digitization in every domain of education; and to provide the research base to advance the wider use of artificial intelligence. The next government must also build on the considerable progress made in internationalizing the student and research communities. Germany will need to expand its foreign policies to integrate transnational innovation policies, including conceptual inputs to the European Union’s next Framework programme.
Ultimately, the goal of all higher-education and research management must be to open up time and space for critical as well as creative thinking, to stimulate bold ideas and to aid movement beyond incremental achievements towards radical innovations. Policymakers, politicians, presidents, rectors and researchers must work together towards the high-trust culture of creativity that Germany and others are trying to achieve.
These ideals have weathered dramatic political upheaval. Adolf Hitler’s Third Reich perverted science and led to the country’s devastation in the Second World War. In 1949, Germany was refounded as two countries, which rebuilt their scientific strengths under opposing political systems.
West Germany’s democratic constitution, which remains in force, declared: “Arts and sciences, research and teaching shall be free.” To ensure that centralization and abuse of power could never happen again, it created a highly federalized country in which responsibility for culture, science and education lies with the Länder, or states — a feature that was to have negative as well as positive effects on university development.
By contrast, the communist German Democratic Republic (DDR) centralized research and kept it under tight control. Scientists were isolated from their colleagues in the West and their system became impoverished as the DDR’s economy gradually failed.
Merkel grew up in this system, graduating from the Karl Marx University in Leipzig in 1978 with a degree in physics and then moving to the Central Institute for Physical Chemistry in Berlin, one of the most prestigious research centres in the DDR. There, she met her second husband, quantum chemist Joachim Sauer, and earned her PhD with honours. Her zeal for physics did not extend to the required political education. In the DDR, no one got their PhD without an accompanying certificate in the study of Marxism–Leninism; Merkel’s dissertation for that subject, ‘What is the socialist lifestyle?’, was accepted with the lowest passing grade.
Stable support
German publicly funded science is organized into five pillars: the universities and its four unique research organizations, each named after a scientific giant in German history.
The Max Planck Society, founded in 1948, now runs 81 basic-research institutes whose directors are given extraordinary budgets and free rein to tread their own paths. A director in life sciences typically gets a basic package of €۲ million (US$2.4 million) a year to run their research programme, not including major equipment purchases. The Fraunhofer Society was founded a year later and is dedicated to applied research. It is named after the Bavarian physicist Joseph von Fraunhofer (1787–۱۸۲۶), a pioneer of precision optics. National research centres, which carry out large-scale strategic research according to government priorities, are now bundled within the Helmholtz Association, named after pioneering physiologist and physicist Hermann von Helmholtz (1821–۹۴). A collection of other scientific institutes and facilities has been bundled into an association named after polymath Gottfried Wilhelm Leibniz (1646–۱۷۱۶).
In a deal that goes back to 1949, the federal government shares the costs of the research organizations with the Länder. But in general, the Länder have to finance the universities on their own. There are around 110 of these, and 230 Fachhochschulen, universities of applied sciences that can’t offer PhDs but train the work force for industry.
“The clarity and transparency of this structure appeals to the German order-loving mentality,” says Ferdi Schüth, a director at the Max Planck Institute for Coal Research in Mülheim. “It makes the system easier for outsiders, including politicians, to understand.”
Support for research quickly built up during the years of West Germany’s Wirtschaftswunder, or post-war economic miracle. Although the reunification of Germany exacted a heavy cost on the country, politicians have in most years maintained steady and strong support for science. Until 2015, the government increased support for all research organizations and the DFG by 5% per year; that annual increase has dropped in the current ‘Pact for Research and Innovation’ between the federal government and Länder, which runs until 2020, but remains enviable at 3%.
“This security about future funding allows us to really plan our research strategies in the long term,” says chemist Martin Stratmann, president of the Max Planck Society. “It’s a big advantage that few other countries share.”
Funding flow
It was confidence in long-term funding that kept immunologist Dolores Schendel from returning to her native United States after what was meant to be a two-year postdoc placement at the Ludwig Maximilian University (LMU) in Munich in the late 1970s. She had intended only to help establish a mouse lab for the LMU’s bone-marrow-transplant programme. But the facilities were seductive, and as her research became increasingly translational — and no longer lent itself to a regular flow of high-profile papers — she knew she could rely on secure local funding. She later moved to the Helmholtz Centre Munich to scale up her work. Then, when a start-up she had founded was bought out, she became chief executive and chief scientific officer of Medigene, an immunotherapy company in Munich. Now she is running clinical trials of candidate cancer vaccines. “I’m not sure I could have achieved this in the United States, where funding tends to be more erratic,” she says.
But Schendel is a rare case. Although Germany is an undisputed world leader in engineering (see ‘Get behind electric cars’), it has had few success stories in the practical application of work from emerging fields, such as biotechnology. Decisions and changes happen slowly, thanks to the layers of bureaucracy between the federal and Länder governments. What’s more, the abuse of science under the Third Reich, including eugenics and human experimentation, left Germans suspicious of genetics in any form and prone to moral outrage. All this has led to sluggish development on some fronts.
The disruption of reunification in 1990 forced the country to fix some systemic problems, such as a lack of collaboration across institutions. Politicians set about chipping away at the numerous obstacles to cooperation.
In 1999, the federal government that preceded Merkel’s — a coalition between the Social Democratic Party and the Greens — amended a law that required Länder ministries to make all university decisions, from allocating budgets to making academic appointments. One by one, the Länder began allowing universities to run their own affairs.
The same government proposed a major shake up for universities, which had traditionally been considered all of equal status. As one of its last acts, it launched the ‘Excellence Initiative’ in 2005. Now well established, this encourages universities to compete for federal money to promote top-level research, graduate schools and, most importantly, ‘clusters of excellence’ — major collaborations with scientists in other research organizations. Universities that win in all categories also earn the title of ‘elite’, which comes with extra cash.
When Merkel became chancellor later that year, she appointed as education and research minister her like-minded colleague and friend Annette Schavan, who drove the Excellence Initiative through a series of rounds that fundamentally changed German universities. So far, the federal government has poured €۴٫۶ billion into the scheme and a total of 14 universities have won elite status in various rounds. Those that have not yet earned that title have upped their game by trying for it, and by collaborating within clusters, which have opened up other streams of funding. The once-isolated pillars of German science are now working together.
Merkel and Schavan have championed laws that allow the federal government to fund university research directly and allow universities to offer high salaries to attract or keep the best scientists (as civil servants, German academics generally earn less than scientists in other countries or those in industry).
Physicist Axel Freimuth has been rector of the University of Cologne since 2005 and says the university has changed beyond recognition. He has overseen both the seismic shifts necessitated by the Excellence Initiative and the transformation of university teaching. Around the time he became rector, Germany began converting from its own idiosyncratic, drawn-out diploma system to the European standard of bachelor’s and master’s degrees, which process students more efficiently, in three to five years. With the arrival of university autonomy, Freimuth coordinated a new governance system for his institution. “We have learnt how to act strategically as a university,” he says. “There is a whole new spirit here.”
Cluster bugs
In the meantime, research-cluster fever has taken over Germany. Schavan launched several initiatives to get scientists from different pillars to work together and with industry. Most strikingly, she created a network of national institutes of health under the umbrella of the Helmholtz Association, which bundles nationwide competencies across institutions in health areas such as neurodegeneration or metabolic disease.
Berlin is experimenting with gathering together parts of its health-related research at the Charité teaching hospital and the Max Delbrück Centre for Molecular Medicine, a Helmholtz centre, into a translational-research structure called the Berlin Institute of Health. And the state of Baden-Württemberg has poured hundreds of millions of euros into the Cyber Valley initiative. Launched in December last year, this clusters all regional research in artificial intelligence and is heavily supported by big companies such as BMW, Daimler, Porsche, Bosch and Facebook.
“This clustering really does have a lot of advantages,” says neuroscientist Hannah Monyer, who has joint positions at the University of Heidelberg and the German Centre for Cancer Research, a Helmholtz centre in the same city. Although it requires researchers to spend more time talking and organizing, she says, “it’s the best thing we can do these days”. A cluster set up under one of the rounds of the Excellence Initiative saved her enormous work when her research led her briefly into the unfamiliar area of pain mechanisms, she says. Rather than having to learn everything from scratch, she enjoyed a seamless collaboration with a local behavioural lab, which provided advice, equipment and technical support.
The mega-collaborations are still in a test phase. Vascular biologist Holger Gerhardt left a permanent post at the Crick Institute in London to join the Berlin Institute of Health initiative in 2014. “I know it is all one big experiment,” he says. “But I feel I really might be able to build up something new here.”
The improvements that researchers now enjoy are sometimes challenged by the German cultural desire for administrative and moral order. Gerhardt says he often finds himself reminding cluster partners not to create unnecessary organizational structures. Primate research, although permitted, is very difficult to do. And use of human embryonic stem cells, aside from a few older cell lines, is forbidden — Merkel remains unshakeable on this point.
Germans’ moral outrage can also be brutally swift. Merkel made a rare blunder in 2011, when she supported defence minister Karl-Theodor zu Guttenberg after he was proved to have plagiarized his PhD thesis. Merkel immediately argued that such accusations shouldn’t matter to his current job; he was not acting as a scientific assistant. But within two weeks, he was forced to resign. Many prominent politicians in Germany have PhDs, and the affair unleashed a crusade to check each of them. Schavan herself faced accusations over her 1980 thesis. Although many scientists did not consider what she did to be plagiarism, she nevertheless had to resign in 2013.
But German science still has some catching up to do, particularly in university infrastructure (see ‘Adapt to stay ahead’). Compared with the pristine modernity of non-university research institutes, university facilities look positively shabby. The Länder have to bear the costs of increasing numbers of students — who attend for free — and cannot keep up with building repairs. The crumbling concrete of science labs and lecture theatres that shot up when the universities expanded in the 1960s and 1970s is embarrassing, says Wilhelm Krull, general secretary of the Volkswagen Foundation in Hanover, Germany’s largest private research funder: “There is a contrast of Glanz und Elend — splendour and misery.”
Few scientists in Germany see the country leaping back to the very top of the scientific world. For one thing, the German language can be off-putting — even though English is generally spoken in the country’s labs these days. The regulations and need for form-filling frustrate many. And, says Krull, “Germany is still somewhat risk-averse. Radical, disruptive innovation is less common here.”
What’s more, the country has much to do to improve the representation of women in research. At research institutions, the proportion of women in top scientific positions has risen from a dismal 4.8% in 2005 to a still-meagre 13.7% in 2016. At universities, the share of women holding top-level academic positions has gone from 10% in 2005 to 17.9% in 2014. That still falls well below the average for the European Union. And things hardly look better in industry; Schendel is one of only 3 female board members out of 160 at the country’s top 30 technology companies.
But scientists are generally confident that things will continue to improve steadily. Merkel’s election platform pledges to continue supporting research and innovation, and to raise annual budget increases to 4%. Each day when not travelling, the chancellor goes home to her flat near the Humboldt University to spend what is left of the evening with her chemist husband. Schüth says that it simply comes down to her roots. “She knows what it is to be a scientist, the value of research,” he says. “That tone trickles down from the top.”